

VLMR51.., VLMK51.., VLMY51..

Vishay Semiconductors

Power SMD LED PLCC2 Plus

22068

DESCRIPTION

The VLMR51.., VLMK51.., and VLMY51.. LED series in PLCC2 plus package are an advanced product in terms of high luminous flux and low thermal resistance. In combination with the small package outline (3.5 mm x 3.5 mm x 1.2 mm) the PLCC2 plus is an ideal choice for backlighting, signage, exterior and interior automotive lighting as well as decorative lighting.

PRODUCT GROUP AND PACKAGE DATA

- Product group: LED
- Package: PLCC2 plus
- Product series: SMD power
- Angle of half intensity: ± 60°

FEATURES

- High efficient AlInGaP technology
- Compact package outline 3.5 mm x 3.5 mm x 1.2 mm
- Angle of half intensity $\phi = \pm 60^{\circ}$

- Luminous intensity and color categorized per packing unit
- Luminous intensity ratio per packing compliant unit $\Phi_{min.}/\Phi_{max.} < 1.6$
- ESD-withstand voltage: up to 2 kV (HBM) according to JESD22-A114-B
- Preconditioning: according to JEDEC level 2a
- Compatible with IR-reflow soldering profiles according to J-STD-020
- AEC-Q101 qualified
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC
- Find out more about Vishay's Automotive Grade Product requirements at: <u>www.vishay.com/applications</u>

APPLICATIONS

- Interior and exterior automotive lighting: dashboard, brake lights, turn lights, backlightin
- · Signal and symbol luminaire
- Decorative lighting
- Architectural lighting
- Backlighting: LCDs, switches, keys, illuminated advertising
- Marker lights
- Traffic lights

PARTS TABLE		
PART	COLOR, LUMINOUS FLUX	TECHNOLOGY WAVELENGTH
VLMR51Y1Z1-GS08	Red, I _V = (2850 to 5600) mcd	AllnGaP on Si
VLMK51Y1Z1-GS08	Amber, $I_V = (2850 \text{ to } 5600) \text{ mcd}$	AllnGaP on Si
VLMY51Y2Z2-GS08	Yellow, I _V = (3550 to 7150) mcd	AllnGaP on Si

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage	I _R = 10 μA	V _R	12	V
DC forward current		١ _F	200	mA
Surge forward current	$t_p \le 10 \ \mu s$	I _{FSM}	1000	mA
Power dissipation		PV	530	mW
Junction temperature		T _{jmax.}	125	°C
Operating temperature range		T _{amb}	- 40 to + 100	°C
Storage temperature range		T _{stg}	- 40 to + 100	°C
Thermal resistance junction/ solder point		R _{thJS}	50	K/W
Thermal resistance junction/ ambient	Mounted on PC board total Cu area > 900 mm ²	R _{thJA}	100	K/W

OPTICAL AND ELECTRICAL CHARACTERISTICS (T $_{amb}$ = 25 °C, unless otherwise specified) VLMR51.., RED

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	l _F = 140 mA	VLMR51Y1Z1	Ι _V	2850		5600	mcd
Luminous flux	l _F = 140 mA	VLMR51Y1Z1	Φ_V		10.6		lm
Dominant wavelength	l _F = 140 mA		λ_{dom}	620		630	nm
Angle of half intensity	I _F = 140 mA		φ		± 60		deg
Forward voltage	I _F = 140 mA		V _F	1.9	2.2	2.65	V
Temperature coefficient I_V	I _F = 140 mA, 0 °C ≤ T ≤ 100 °C		TCIV		- 26.8		mcd/K
Temperature coefficient V_F	I _F = 140 mA, 0 °C ≤ T ≤ 100 °C		TC _V		- 3.5		mV/K
Temperature coefficient $\lambda_{\text{dom.}}$	$I_F = 140 \text{ mA}, \\ 0 \text{ °C} \leq T \leq 100 \text{ °C}$		$TC_{\lambda dom.}$		0.06		nm/K

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified) **VLMK51.., AMBER**

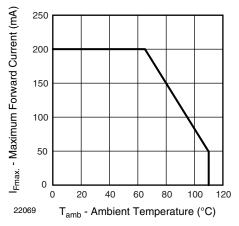
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	I _F = 140 mA	VLMK51Y1Z1	Ι _V	2850	4500	5600	mcd
Luminous flux	l _F = 140 mA	VLMK51Y1Z1	Φ _V		11.9		lm
Dominant wavelength	l _F = 140 mA		λ _{dom}	610		621	nm
Angle of half intensity	l _F = 140 mA		φ		± 60		deg
Forward voltage	l _F = 140 mA		V _F	1.9	2.2	2.65	V
Temperature coefficient I_V	I _F = 140 mA, 0 °C ≤ T ≤ 100 °C		TCIV		- 35.3		mcd/K
Temperature coefficient V_F	I _F = 140 mA, 0 °C ≤ T ≤ 100 °C		TCv		- 2.9		mV/K
Temperature coefficient $\lambda_{\text{dom.}}$	I _F = 140 mA, 0 °C ≤ T ≤ 100 °C		$TC_{\lambda dom.}$		0.07		nm/K

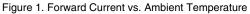
OPTICAL AND ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) VLMY51, YELLOW							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	l _F = 140 mA	VLMY51Y2Z2	Ι _V	3550	5000	7150	mcd
Luminous flux	l _F = 140 mA	VLMY51Y2Z2	Φ_V		13.2		lm
Dominant wavelength	l _F = 140 mA		λ_{dom}	585		594	nm
Angle of half intensity	l _F = 140 mA		φ		± 60		deg
Forward voltage	l _F = 140 mA		V _F	1.9	2.2	2.65	V
Temperature coefficient I_V	I _F = 140 mA, 0 °C ≤ T ≤ 100 °C		TCIV		- 55.5		mcd/K
Temperature coefficient V_F	I _F = 140 mA, 0 °C ≤ T ≤ 100 °C		TCv		- 2.9		mV/K
Temperature coefficient $\lambda_{\text{dom.}}$	$I_F = 140 \text{ mA}, \\ 0 \text{ °C} \leq T \leq 100 \text{ °C}$		$TC_{\lambda dom.}$		0.09		nm/K

LUMINOUS INTENSITY CLASSIFICATION

GROUP	LUMINOUS INTENSITY (mcd)				
STANDARD	MIN. MAX.				
Y1	2850	3550			
Y2	3550	4500			
Z1	4500	5600			
Z2	5600	7150			

Note:


Luminous flux is tested at a current pulse duration of 25 ms and an accuracy of \pm 11 %.


The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel (there will be no mixing of two groups on each reel).

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one reel. In order to ensure availability, single wavelength groups will not be orderable.

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

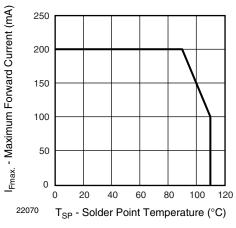


Figure 2. Max. Forward Current vs. Solder Point Temperature

COLOR CLASSIFICATION

	AM	BER	YELLOW		
GROUP	DOM. WAVELENGTH (nm)				
	MIN.	MAX.			
W	610	615			
Х	615	621	585	588	
Y			588	591	
Z			591	594	

Note:

Wavelengths are tested at a current pulse duration of 25 ms and an accuracy of ± 1 nm.

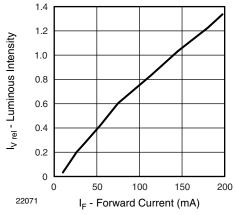


Figure 3. Rel. Luminous Intensity vs. Forward Current

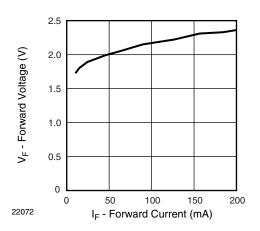


Figure 4. Rel. Forward Voltage vs. Forward Current

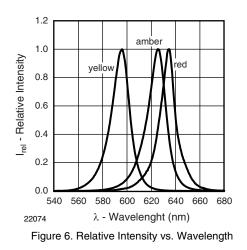



Figure 5. Forward Current vs. Duty Ratio

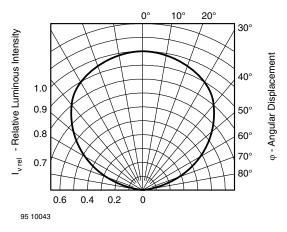
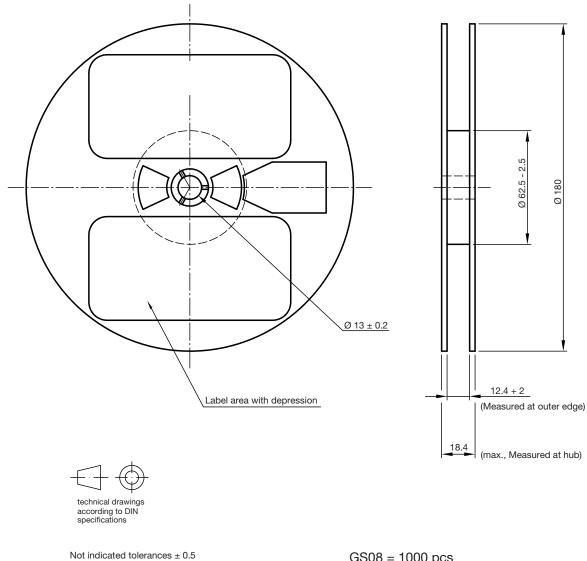
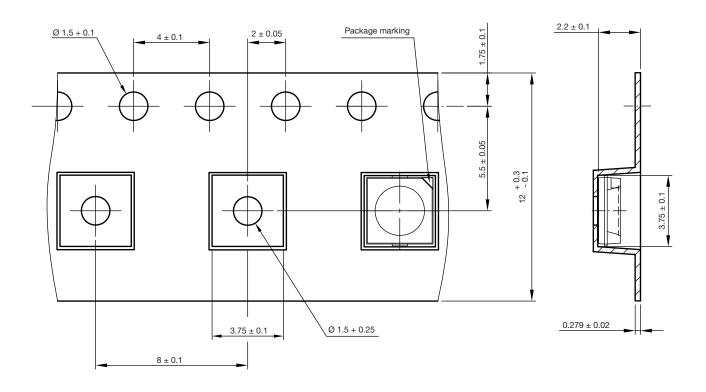



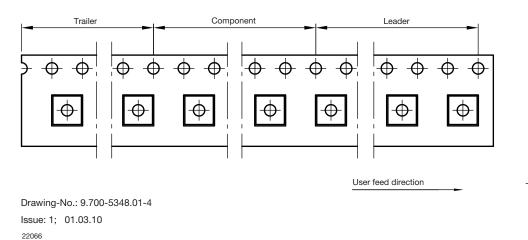
Figure 7. Rel. Luminous Intensity vs. Angular Displacement

REEL DIMENSIONS in millimeters


Material: black static dissipative

GS08 = 1000 pcs

Drawing-No.: 9.800-5104.01-4 Issue: 2; 19.03.10 22067

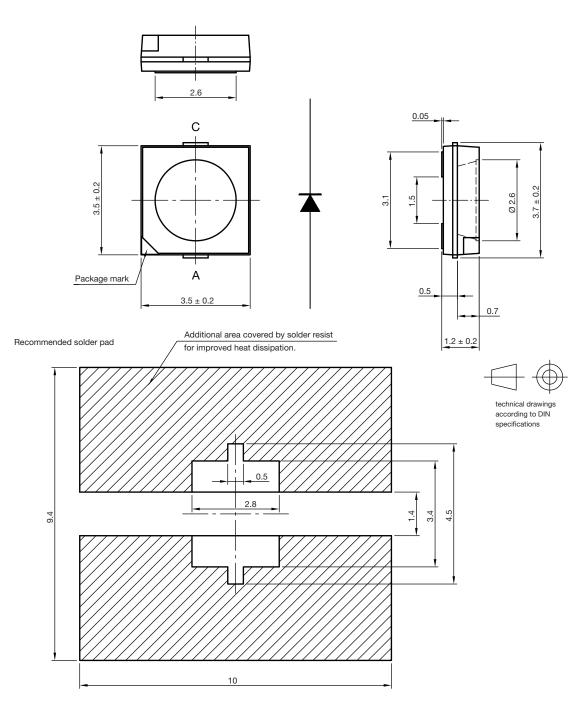

TAPING AND ORIENTATION DIMENSIONS in millimeters

Reels come in quantity of 1000 units.

200 mm min. for Ø 180 reel

480 mm min. for Ø 180 reel

VISHAY


according to DIN specifications

VLMR51.., VLMK51.., VLMY51..

Vishay Semiconductors

RECOMMENDED PAD DESIGN DIMENSIONS in millimeters

Drawing-No.: 6.541-5084.01-4 Issue: 1; 13.04.10 22103

SOLDERING PROFILE

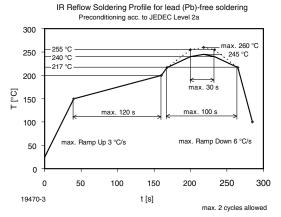
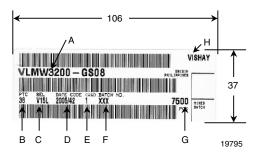
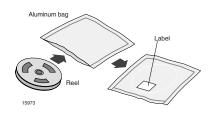



Figure 8. Vishay Lead (Pb)-free Reflow Soldering Profile (acc. to J-STD-020)


BARCODE-PRODUCT-LABEL EXAMPLE:

- A) Type of component
- B) Manufacturing plant
- C) SEL selection code (bin):
 - e.g.: V1 = code for luminous intensity group 5L = code for chrom. coordinate group
- D) Date code year/week
- E) Day code (e. g. 1: Monday)
- F) Batch no.
- G) Total quantity
- H) Company code

DRY PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

FINAL PACKING

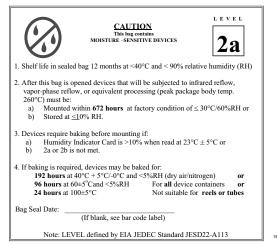
The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity \leq 60 % RH max.

After more than 672 h under these conditions moisture content will be too high for reflow soldering.


In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

192 h at 40 °C + 5 °C/- 0 °C and < 5 % RH (dry air/nitrogen) or

96 h at 60 $^{\circ}\text{C}$ + 5 $^{\circ}\text{C}$ and < 5 % RH for all device containers or

24 h at 100 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC standard JESD22-A112 level 2a label is included on all dry bags.

Example of JESD22-A112 Level 2a label

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electro-static sensitive devices warning labels are on the packaging.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.